Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Year range
1.
ACM Computing Surveys ; 55(3):1937/01/01 00:00:00.000, 2023.
Article in English | Academic Search Complete | ID: covidwho-2229510

ABSTRACT

Recent advances in communication technologies and the Internet-of-Medical-Things (IOMT) have transformed smart healthcare enabled by artificial intelligence (AI). Traditionally, AI techniques require centralized data collection and processing that may be infeasible in realistic healthcare scenarios due to the high scalability of modern healthcare networks and growing data privacy concerns. Federated Learning (FL), as an emerging distributed collaborative AI paradigm, is particularly attractive for smart healthcare, by coordinating multiple clients (e.g., hospitals) to perform AI training without sharing raw data. Accordingly, we provide a comprehensive survey on the use of FL in smart healthcare. First, we present the recent advances in FL, the motivations, and the requirements of using FL in smart healthcare. The recent FL designs for smart healthcare are then discussed, ranging from resource-aware FL, secure and privacy-aware FL to incentive FL and personalized FL. Subsequently, we provide a state-of-the-art review on the emerging applications of FL in key healthcare domains, including health data management, remote health monitoring, medical imaging, and COVID-19 detection. Several recent FL-based smart healthcare projects are analyzed, and the key lessons learned from the survey are also highlighted. Finally, we discuss interesting research challenges and possible directions for future FL research in smart healthcare. [ FROM AUTHOR]

2.
IEEE Access ; 9: 95730-95753, 2021.
Article in English | MEDLINE | ID: covidwho-1327481

ABSTRACT

The beginning of 2020 has seen the emergence of coronavirus outbreak caused by a novel virus called SARS-CoV-2. The sudden explosion and uncontrolled worldwide spread of COVID-19 show the limitations of existing healthcare systems in timely handling public health emergencies. In such contexts, innovative technologies such as blockchain and Artificial Intelligence (AI) have emerged as promising solutions for fighting coronavirus epidemic. In particular, blockchain can combat pandemics by enabling early detection of outbreaks, ensuring the ordering of medical data, and ensuring reliable medical supply chain during the outbreak tracing. Moreover, AI provides intelligent solutions for identifying symptoms caused by coronavirus for treatments and supporting drug manufacturing. Therefore, we present an extensive survey on the use of blockchain and AI for combating COVID-19 epidemics. First, we introduce a new conceptual architecture which integrates blockchain and AI for fighting COVID-19. Then, we survey the latest research efforts on the use of blockchain and AI for fighting COVID-19 in various applications. The newly emerging projects and use cases enabled by these technologies to deal with coronavirus pandemic are also presented. A case study is also provided using federated AI for COVID-19 detection. Finally, we point out challenges and future directions that motivate more research efforts to deal with future coronavirus-like epidemics.

3.
Non-conventional in 0 | WHO COVID | ID: covidwho-704222

ABSTRACT

The recent outbreak of COVID-19 has taken the world by surprise, forcing lockdowns and straining public health care systems. COVID-19 is known to be a highly infectious virus, and infected individuals do not initially exhibit symptoms, while some remain asymptomatic. Thus, a non-negligible fraction of the population can, at any given time, be a hidden source of transmissions. In response, many governments have shown great interest in smartphone contact tracing apps that help automate the difficult task of tracing all recent contacts of newly identified infected individuals. However, tracing apps have generated much discussion around their key attributes, including system architecture, data management, privacy, security, proximity estimation, and attack vulnerability. In this article, we provide the first comprehensive review of these much-discussed tracing app attributes. We also present an overview of many proposed tracing app examples, some of which have been deployed countrywide, and discuss the concerns users have reported regarding their usage. We close by outlining potential research directions for next-generation app design, which would facilitate improved tracing and security performance, as well as wide adoption by the population at large.

SELECTION OF CITATIONS
SEARCH DETAIL